В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.
В данной статье рассматривается роль алгоритмов в решении задач искусственного интеллекта (ИИ) и способы повышения их эффективности. Будут проанализированы основные алгоритмические подходы, используемые в системах (ИИ), а также освещены их преимущества и ограничения. В статье использована передовая литература, которая поможет изучить теоретические и практические аспекты алгоритмов искусственного интеллекта.
Настоящая работа посвящена исследованию применения машинного обучения (ML) для трансформации бизнсс-процсссов в условиях цифровой экономики. Рассматриваются возможности использования алгоритмов ML для автоматизации управления, прогнозирования ключевых показателей эффективности (K.PI) и оптимизации распределения ресурсов. В статье подробно описаны теоретические основы, методология разработки программного решения, а также результаты экспериментов на реальных данных из логистики и электронной коммерции. Приводятся примеры применения линейной регрессии, случайного леса, градиентного бустинга и нейронных сетей, демонстрирующие их эффективность в повышении производительности и снижении издержек. Работа подчёркивает стратегическую роль ML как инструмента достижения конкурентных преимуществ и предлагает направления для дальнейших исследований в области адаптации технологий к различным отраслям.
В данном исследовании анализируются алгоритмы преобразования классических изображений в квантовые, что является одним из важных этапов квантовой обработки изображений. Мы представляем квантовую схему с 8 000 снимков на компьютере реального времени IBM и симуляторе Аег, предлагаемый подход для эффективного кодирования изображения в квантовый формат и оптимизации количества используемых кубитов. Результаты исследования могут способствовать развитию технологий квантовой обработки изображений.
В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
В данном исследовании базы данных изображений ладоней всесторонне анализируются как ключевой ресурс биометрических систем идентификации. В работе подробно рассмотрены процесс создания баз данных, их технические характеристики и области применения. Также проанализированы существующие базы данных, такие как CAS1A Palmprint, NEC Palm Database и PolyU, MultispectraL В ходе исследования выявлены проблемы качества, вопросы конфиденциальности, сложности стандартизации и технические ограничения, а также разработаны рекомендации по их решению.
В данном исследовании проанализированы основные базы изображений, используемые в таких областях, как медицина, география, сельское хозяйство и биометрические технологии. В частности, рассмотрены базы данных LIDC-IDRI, OASIS, Landsat, Sentinel-2, Google Earth Engine, PlantVillagc, UAV-bascd crop monitoring datasets, LFW и CASIA-WebFace. В работе обсуждаются исследования и разработки, осуществленные с использованием указанных баз.
Целью данной статьи является разработка комплекса математических моделей для решения многих вопросов, связанных с использованием природных ресурсов с экологической и экономической точек зрения. Эти модели должны описывать конкретные аспекты реализации изучаемой системы с учетом различных характеристик экологоэкономических систем. В этом случае придется решать большое количество новых вопросов. Эти вопросы возникают при моделировании и анализе эколого-экономических систем.
Искусственный интеллект (ИИ) становится неотъемлемой частью повседневной жизни, активно влияя на множество аспектов человеческой деятельности. Технологии ИИ используются для автоматизации рутинных задач, улучшения качества обслуживания и повышения удобства в различных сферах, таких как медицина, образование, транспорт, финансы и развлечения. Например, голосовые помощники, рекомендательные системы, умные дома и чат-боты значительно упрощают выполнение повседневных задач. Однако вместе с преимуществами ИИ вызывает вопросы, связанные с этикой, приватностью и безопасностью данных. Влияние искусственного интеллекта на рынок труда вызывает опасения о замене человеческого труда, в то время как стремительное развитие технологий порождает необходимость адаптации к новым условиям. Данная тема подчеркивает важность изучения преимуществ и рисков, связанных с внедрением ИИ, а также выработки стратегий его эффективного использования для улучшения качества жизни и минимизации возможных у1роз.
Данная статья посвящена необходимости разработки моделей прогнозирования на основе данных для принятия качественных решений в управленческих системах. Рассмотрены методы, основанные на временных рядах, в процессе анализа данных и прогнозирования. Приводятся анализ временных рядов, влияние на формирование управленческой стратегии, а также математические модели и алгоритмы, необходимые для повышения точности и эффективности, а также улучшения надежности результатов.
В данной статье анализируется процесс анализа и классификации текстовых данных, рассматриваются типы текстовых данных, т. е. структурированные, неструктурированные и полуструктурированные данные, а также выделяются их характеристики. Кроме того, особое внимание было уделено существующим возможностям и проблемам обработки текстовых данных на узбекском языке. В частности, на примере системы «Tahrirchi» были представлены достижения и недостатки в анализе текстовых данных на узбекском языке.
В данной тезисной работе представлено общее описание алгоритмов обработки рентгеновских изображений человеческой стопы, которые важны для диагностики различных состояний стопы, включая переломы, деформации и заболевания суставов. Исследование охватывает несколько методов обработки изображений, таких как выявление изменений, сегментация и извлечение признаков, что способствует улучшению качества рентгеновских снимков и повышению точности диагностики. Кроме того, в тезисе обсуждаются трудности, связанные с шумами, искажениями и низкой контрастностью рентгеновских изображений, а также предлагаются методы снижения этих проблем. Реализация этих алгоритмов направлена на повышение эффективности диагностики заболеваний стопы и более эффективное принятие медицинских решений.