Статья посвящено решению проблемы выбора прсцидентных объектов, являющейся важным аспектом мульти кластеризации в процессах распознавания и классификации образов. Предложен новый алгоритм выбора прецидентных объектов с учетом пространства номинальных и числовых признаков. Этот алгоритм обеспечивает точную, устойчивую и прозрачную классификацию данных, повышая эффективность принятия аналитических решений, особенно в процессах медицинской диагностики.
В статье исследована эффективность ансамблевых алгоритмов на основе принципов частичной прсцедентности при классификации стадий рака. Механизм взвешенного принятия решений на основе линейной свертки показал высокие результаты при классификации типов рака (С 16, С17, С18, С44, С50, С00). Разработан метод на основе манхэттенского расстояния и пороговых значений, результаты сравнены с классическими алгоритмами. Предложенный ансамблевый алгоритм повышает точность классификации до 94,7-96,2%, что на 3-10% выше результатов существующих алгоритмов.