Данная исследовательская работа посвящена проблеме классификации патологий на снимках компьютерной томо!рафии почек с использованием глубоких нейронных сетей, которая анализирует не только бинарную классификацию типа «норма/патология», но и сложные вопросы дифференциальной диагностики между патологиями. В работе также предложен комбинаторный подход к классификации патологий, в котором показано, что первоначально постановка общего диагноза с использованием четырехфакторной модели классификации, а в сомнительных случаях дополнительное обследование с использованием бинарных или тернарных моделей, приемлемо для клинической практики.
В данной статье анализируется процесс анализа и классификации текстовых данных, рассматриваются типы текстовых данных, т. е. структурированные, неструктурированные и полуструктурированные данные, а также выделяются их характеристики. Кроме того, особое внимание было уделено существующим возможностям и проблемам обработки текстовых данных на узбекском языке. В частности, на примере системы «Tahrirchi» были представлены достижения и недостатки в анализе текстовых данных на узбекском языке.