В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.
Искусственный интеллект (ИИ) становится неотъемлемой частью повседневной жизни, активно влияя на множество аспектов человеческой деятельности. Технологии ИИ используются для автоматизации рутинных задач, улучшения качества обслуживания и повышения удобства в различных сферах, таких как медицина, образование, транспорт, финансы и развлечения. Например, голосовые помощники, рекомендательные системы, умные дома и чат-боты значительно упрощают выполнение повседневных задач. Однако вместе с преимуществами ИИ вызывает вопросы, связанные с этикой, приватностью и безопасностью данных. Влияние искусственного интеллекта на рынок труда вызывает опасения о замене человеческого труда, в то время как стремительное развитие технологий порождает необходимость адаптации к новым условиям. Данная тема подчеркивает важность изучения преимуществ и рисков, связанных с внедрением ИИ, а также выработки стратегий его эффективного использования для улучшения качества жизни и минимизации возможных у1роз.