• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Анализ аппаратного и программного обеспечения веб- сервера ESP32 и методы определения уровня воды в скважине

Фархат Ражабов, Ирода Тожибоева (Автор)
В данной статье проведен анализ архитектуры веб-сервера, аппаратного и программного обеспечения для мониторинга и контроля уровня воды в скважине па базе микроконтроллера ESP32. Также рассматриваются возможности использования технологий 1оТ (Интернет вещей) для расширения возможностей мониторинга в реальном времени на платформе ESP32. В статье подробно проанализированы методы и способы наблюдения и контроля за подземными водами. Приведены экспериментальные результаты по техническим параметрам разработанного оборудования и скорости работы программного обеспечения. Данная система может найти широкое применение в эффективном управлении водными ресурсами, экологическом мониторинге, а также в сельском хозяйстве.
21-08-2025
  • PDF (Узбекский)
22-25 1 0

Алгоритм определения прецидентных объектов в полном пространстве

Ахрам Нишанов, Файзулла Олламберганов, Умиджон Одилжонов (Автор)
Статья посвящено решению проблемы выбора прсцидентных объектов, являющейся важным аспектом мульти кластеризации в процессах распознавания и классификации образов. Предложен новый алгоритм выбора прецидентных объектов с учетом пространства номинальных и числовых признаков. Этот алгоритм обеспечивает точную, устойчивую и прозрачную классификацию данных, повышая эффективность принятия аналитических решений, особенно в процессах медицинской диагностики.
27-08-2025
  • PDF (Узбекский)
280-283 0 0

Расширение правил с использованием логических предсказаний первого порядка при решении задач классификации

Нодир Рахимов, Дилмурод Хасанов, Ойбек Примкулов (Автор)
В данной исследовательской работе частично описаны элементы базы знаний, которые широко используются в процессах принятия решений в интеллектуальных системах, этапы их формирования, а также последовательности обогащения логических правил предикатами. Кроме того, исследование включает общую архитектуру интеллектуальных систем на основе базы знаний и теоретические сведения о типах и свойствах правил. В то же время статья также включает анализ основной литературы по построению и обогащению правил с использованием концепций и принципов логики первого порядка.
29-08-2025
  • PDF (Узбекский)
323-328 0 0

Анализ алгоритмов интеллектуальной обработки речевых сигналов

Фахриддин Абдиразаков, Султон Насиров, Уролбой Xусанов (Автор)
В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.
27-08-2025
  • PDF (Узбекский)
304-307 14 6

Роль цифровых технологий в развитии навыков критического мышления у будущих учителей начальных классов

Фотима Абдикаримова (Автор)
В этой статье показано, как цифровые технологии играют важную роль в развитии навыков критического мышления у будущих учителей начальной школы. Также упоминается необходимость применения инновационных методов обучения для устранения проблем, возникающих в процессе.
21-08-2025
  • PDF (Узбекский)
17-20 1 0

Сравнительный анализ методов машинного обучения в задачах онкопрофилактики и диагностики

Чарос Хидирова (Автор)
В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
28-08-2025
  • PDF
188-194 0 0

Анализ современных подходов к обработке цифровых видеоизображений

Мирзаакбар Худайбердиев, Ранохон Тохтасинова (Автор)
В статье рассматривается цифровая обработка видеоизображений -процессы улучшения качества видео, оптимизации изображений и их анализа. В статье рассматриваются современные технологии, в частности методы, основанные на искусственном интеллекте и машинном обучении, а также такие подходы, как снижение шума в видео, восстановление изображений, цветокоррекция и улучшение сжатия видео.
24-08-2025
  • PDF (Узбекский)
158-163 0 0
1 - 7 из 7 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer