• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Анализ алгоритмов интеллектуальной обработки речевых сигналов

Фахриддин Абдиразаков, Султон Насиров, Уролбой Xусанов (Автор)
В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.
27-08-2025
  • PDF (Узбекский)
304-307 14 6

инновационные траектории применения цифровых технологий в высшем образовании в условиях индустрии 4.0

Ирина Жуковская (Автор)
Настоящая статья показывает, что в условиях индустрии 4.О., цифровые технологии в высшем образовании способствуют повышению качества, детализации и наглядности учебного процесса, позволяют выстроить индивидуальные траектории обучения для каждого студента, предоставляют новые возможности для повышению квалификации профессорско-преподавательского состава вуза, что в конечном итоге, служит залогом подготовки высококвалифицированных специалистов для отраслей и сфер экономики.
21-08-2025
  • PDF
7-10 0 0

Создание базы знаний из текстов на основе LSTM

Дилноз Мухамедиева, Санжар Унгалов, Нафисахон Тургунова (Автор)
В данной статье предлагается модель, основанная на глубоком обучении, для извлечения ключевых объектов из текстов и создания базы знаний. Для задачи распознавания именованных сущностей (Named Entity Recognition, NER) используется модель долгой краткосрочной памяти (Long Short-Term Memory, LSTM). Данные предварительно обрабатываются, преобразуются в цифровую форму с помощью токенизации и one-hot кодирования. Модель обучается и оценивается для выделения различных типов объектов (имена людей, даты, географические названия). Экспериментальные результаты демонстрируют эффективность модели, а также анализируется влияние различных параметров.
27-08-2025
  • PDF (Узбекский)
315-318 0 1

Использование инновационных педагогических технологий в повышении эффективности обучения

Дилдора Холматова (Автор)
В данной статье рассматривается вопрос применения инновационных педагогических технологий в повышении эффективности обучения. В статье анализируется влияние на образовательный процесс таких инновационных методов, как интерактивное обучение, геймификация, онлайн-обучение и персональный подход. По результатам исследования было показано, что достигается улучшение мотивации, успеваемости и творческого потенциала учащихся.
22-08-2025
  • PDF (Узбекский)
77-81 0 0

Мозг из кода – как алгоритмы делают бизнес гениальным

Джавохирбек Эсонов, Н Эгамбердиев (Автор)
Настоящая работа посвящена исследованию применения машинного обучения (ML) для трансформации бизнсс-процсссов в условиях цифровой экономики. Рассматриваются возможности использования алгоритмов ML для автоматизации управления, прогнозирования ключевых показателей эффективности (K.PI) и оптимизации распределения ресурсов. В статье подробно описаны теоретические основы, методология разработки программного решения, а также результаты экспериментов на реальных данных из логистики и электронной коммерции. Приводятся примеры применения линейной регрессии, случайного леса, градиентного бустинга и нейронных сетей, демонстрирующие их эффективность в повышении производительности и снижении издержек. Работа подчёркивает стратегическую роль ML как инструмента достижения конкурентных преимуществ и предлагает направления для дальнейших исследований в области адаптации технологий к различным отраслям.
28-08-2025
  • PDF (Узбекский)
219-224 0 0

Роль искусственного интеллекта в образовательном процессе

Дурдона Абдуалиева (Автор)
Целью данного исследования является анализ того, какую важную роль играет искусственный интеллект (ИИ) в образовательном процессе. В статье исследуется, как современные ИИ-технологии могут решить ряд проблем в сфере образования, таких как барьеры доступа к учебным материалам, трудности в обучении и дефицит образовательных ресурсов.
22-08-2025
  • PDF
85-88 0 1

Как искусственный интеллект меняет нашу жизнь: современные реалии и будущее

Зойиржон Ибрагимов, Наргиза Ибрагимова (Автор)
Искусственный интеллект (ИИ) становится неотъемлемой частью повседневной жизни, активно влияя на множество аспектов человеческой деятельности. Технологии ИИ используются для автоматизации рутинных задач, улучшения качества обслуживания и повышения удобства в различных сферах, таких как медицина, образование, транспорт, финансы и развлечения. Например, голосовые помощники, рекомендательные системы, умные дома и чат-боты значительно упрощают выполнение повседневных задач. Однако вместе с преимуществами ИИ вызывает вопросы, связанные с этикой, приватностью и безопасностью данных. Влияние искусственного интеллекта на рынок труда вызывает опасения о замене человеческого труда, в то время как стремительное развитие технологий порождает необходимость адаптации к новым условиям. Данная тема подчеркивает важность изучения преимуществ и рисков, связанных с внедрением ИИ, а также выработки стратегий его эффективного использования для улучшения качества жизни и минимизации возможных у1роз.
22-08-2025
  • PDF
102-106 0 0

Применение подхода, основанного на машинном обучении, для профилактики эндокринных заболеваний в медицине

Ахрам Нишанов, Фарход Менгтураев (Автор)
В статье рассматриваются подходы, основанные на машинном обучении, к профилактике эндокринных заболеваний в медицине, их преимущества и перспективы применения. Изучена возможность прогнозирования ранних стадий заболеваний с использованием сбора данных, их анализа и алгоритмов машинного обучения.
24-08-2025
  • PDF (Узбекский)
173-177 0 0

Значение использования педагогических технологий в преподавании истории

Наргиза Юсупова (Автор)
В этой статье исследуется важность педагогических технологий в преподавании истории. Показано, как эффективно осуществляется процесс исторического познания учащихся с помощью инновационных методов обучения, в частиоеги, интерактивных игр, групповых дискуссий и практических занятий. Обсуждается роль участия родителей и общественности в образовательном процессе, повышение интереса учащихся к истории.
22-08-2025
  • PDF (Узбекский)
81-84 1 0

Вопросы обработки изображений органов человека, полученных методом видеоэндоскопии

Юсуф Юлдошев, Лобар Бадалова (Автор)
В данной статье рассмотрены проблемы, возникающие при цифровой обработке изображений внутренних органов человека, полученных методом видеоэндоскопии, а также пути их устранения. Несмотря на широкое применение видеоэндоскопических изображений в медицине, в диагностике и хирургии, их качество может снижаться из-за таких факторов, как недостаточное освещение, шумы, геометрические искажения и изменение цветового баланса. Кроме того, биологическое разнообразие человеческого организма и патологические различия проявления заболеваний негативно влияют на точность моделей искусственного интеллекта. В статье обоснована актуальность использования современных алгоритмических подходов, включая технологии глубокого обучения, для повышения качества изображений и эффективности диагностики.
29-08-2025
  • PDF (Узбекский)
346-350 0 0

Роль цифровых технологий в развитии навыков критического мышления у будущих учителей начальных классов

Фотима Абдикаримова (Автор)
В этой статье показано, как цифровые технологии играют важную роль в развитии навыков критического мышления у будущих учителей начальной школы. Также упоминается необходимость применения инновационных методов обучения для устранения проблем, возникающих в процессе.
21-08-2025
  • PDF (Узбекский)
17-20 1 0

Современные подходы к определению языка на основе речевых сигналов

Камолиддин Шукуров, Умиджон Хасанов, Мохидил Рахмонова (Автор)
В настоящее время активно развиваются системы, обеспечивающие естественное взаимодействие между человеком и машиной. Одной из актуальных задач является определение языка пользователя. В данной статье рассматривается задача определения языка (Language Identification - LID) на основе речевых сигналов, области её применения, существующие проблемы и современные подходы. Проведен сравнительный анализ классических методов машинного обучения (GMM, SVM, i-vector) и подходов, основанных на глубоких нейронных сетях (CNN, RNN, Transformer). Также описаны основные метрики оценки эффективности систем: Accuracy, Precision, Fl-score и Equal Error Rate (EER). Рассмотрены передовые подходы к решению сложных случаев, таких как переключение языков (code-switching) и открытые наборы языков (open-set LID), а также обсуждены практические перспективы для малоизученных языков, включая узбекский. Результаты исследования могут служить теоретической и практической основой для разработки многоязычных интерактивных голосовых систем.
27-08-2025
  • PDF (Узбекский)
300-304 0 0

30 формирование устойчивых экосистем в высшем образовании через цифровизацию и искусственный интеллект

Максим Пономарев (Автор)
Статья посвящена изучению влияния цифровой трансформации и искусственного интеллекта на формирование устойчивых экосистем в высшем образовании. В работе рассматриваются теоретические и практические аспекты внедрения передовых цифровых технологий, таких как облачные сервисы, большие данные, искусственный интеллект и машинное обучение, которые предоставляют новые возможности для оптимизации образовательного процесса и управления учебными заведениями.
21-08-2025
  • PDF
30-32 0 0

Использование технологий искусственного интеллекта в обучении студентов математике и теории вероятностей

Ф Ражабов, Нилуфар Алламуратова (Автор)

Использование технологий искусственного интеллекта в преподавании математики и теории вероятностей повышает качество обучения, делает его более доступным и увлекательным для студентов. Применение персонализированного подхода, интерактивных методов и геймификации способствует развитию аналитического мышления и самостоятельных навыков у обучающихся.

22-08-2025
  • PDF
123-126 0 0

Проблемы алгоритмизации при решении задач искусственного интеллекта

Бувсара Джураева (Автор)
В данной статье рассматривается роль алгоритмов в решении задач искусственного интеллекта (ИИ) и способы повышения их эффективности. Будут проанализированы основные алгоритмические подходы, используемые в системах (ИИ), а также освещены их преимущества и ограничения. В статье использована передовая литература, которая поможет изучить теоретические и практические аспекты алгоритмов искусственного интеллекта.
27-08-2025
  • PDF (Узбекский)
289-293 0 0

Сравнительный анализ методов машинного обучения в задачах онкопрофилактики и диагностики

Чарос Хидирова (Автор)
В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
28-08-2025
  • PDF
188-194 0 0

Анализ современных подходов к обработке цифровых видеоизображений

Мирзаакбар Худайбердиев, Ранохон Тохтасинова (Автор)
В статье рассматривается цифровая обработка видеоизображений -процессы улучшения качества видео, оптимизации изображений и их анализа. В статье рассматриваются современные технологии, в частности методы, основанные на искусственном интеллекте и машинном обучении, а также такие подходы, как снижение шума в видео, восстановление изображений, цветокоррекция и улучшение сжатия видео.
24-08-2025
  • PDF (Узбекский)
158-163 0 0

Интеллектуальные системы для обеспечения равного доступа к дистанционному обучению студентов вечернего отделения

Зухра Ахунбетова (Автор)

Статья посвящена проблеме неравного доступа к дистанционному обучению у студентов вечернего отделения, обусловленного профессиональной занятостью, бытовыми условиями и техническими ограничениями. Предлагается использование интеллектуальных систем как инструмента для персонализации образовательного процесса, адаптации учебных материалов, а также для организации гибкого взаимодействия между студентом и преподавателем. Приводятся примеры возможных решений, архитектура интеллектуальной поддержки и потенциальный эффект внедрения на уровне ВУЗа.

22-08-2025
  • PDF
96-99 4 1

Этапы применения методологии CRISP-DM в интеллектуальном анализе данных (этап подготовки данных)

Шохрух Матчонов (Автор)
В данной работе внимание уделено этапу подготовки обучающих данных методологии CR1SP-DM при интеллектуальном анализе данных. Потому что этот этап занимает до 80% времени разработки модели. Шаги этапа подготовки данных для обучения объясняются с помощью иллюстраций, представлены подходы к обучению данных в модели, а также упоминаются соображения для инженеров по машинному обучению и аналитиков данных.
29-08-2025
  • PDF (Узбекский)
338-340 0 0

Интеграция технологий искусственного интеллекта в образовательный процесс

Ольга Медведева (Автор)
В статье рассматриваются ключевые аспекты внедрения искусственного интеллекта в образовательный процесс. На примере разработки онлайн-курса по базам данных показано практическое применение искусственного интеллекта: генерация материала, автоматическая проверка заданий, чат-бот и др. Особое внимание уделяется роли искусственного интеллекта, как инструмента поддержки для преподавания.
28-08-2025
  • PDF
233-234 0 0
1 - 20 из 20 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer