В статье приведено нейросетевое прогнозирование геомагнитного К - индекса с использованием нейронных сетей. Построение нейронных сетей проведено для многослойного персептрона и сети радиаль- но базисных функций. Нейросетевые модели имеют минимальную ошибку краткосрочного прогнозирования геомагнитного К - индекса по сравнению со статистическими моделями.
Данная исследовательская работа посвящена проблеме классификации патологий на снимках компьютерной томо!рафии почек с использованием глубоких нейронных сетей, которая анализирует не только бинарную классификацию типа «норма/патология», но и сложные вопросы дифференциальной диагностики между патологиями. В работе также предложен комбинаторный подход к классификации патологий, в котором показано, что первоначально постановка общего диагноза с использованием четырехфакторной модели классификации, а в сомнительных случаях дополнительное обследование с использованием бинарных или тернарных моделей, приемлемо для клинической практики.
В статье представлен метод управления гидротехническими сооружениями в открытых каналах в режиме реального времени с использованием многослойного персептрона (MLP) и искусственных нейронных сетей (ANN). Разработанная модель ANN, превосходящая традиционные гидравлические модели по эффективности, предназначена для прогнозирования состояния затвора на основе уровня воды, расхода и потребности в воде.
В настоящее время активно развиваются системы, обеспечивающие естественное взаимодействие между человеком и машиной. Одной из актуальных задач является определение языка пользователя. В данной статье рассматривается задача определения языка (Language Identification - LID) на основе речевых сигналов, области её применения, существующие проблемы и современные подходы. Проведен сравнительный анализ классических методов машинного обучения (GMM, SVM, i-vector) и подходов, основанных на глубоких нейронных сетях (CNN, RNN, Transformer). Также описаны основные метрики оценки эффективности систем: Accuracy, Precision, Fl-score и Equal Error Rate (EER). Рассмотрены передовые подходы к решению сложных случаев, таких как переключение языков (code-switching) и открытые наборы языков (open-set LID), а также обсуждены практические перспективы для малоизученных языков, включая узбекский. Результаты исследования могут служить теоретической и практической основой для разработки многоязычных интерактивных голосовых систем.
Данная исследовательская работа посвящена вопросу сегментации рентгеновских снимков легких, в которой выдвигается идея усовершенствования традиционной архитектуры U-Net с помощью остаточных связей и адаптивных механизмов обучения, а также данная модель проверяется в экспериментах. В результате было отмечено, что модель достигла высоких показателей точности, коэффициента Dice и IoU.
Данная статья посвящена необходимости разработки моделей прогнозирования на основе данных для принятия качественных решений в управленческих системах. Рассмотрены методы, основанные на временных рядах, в процессе анализа данных и прогнозирования. Приводятся анализ временных рядов, влияние на формирование управленческой стратегии, а также математические модели и алгоритмы, необходимые для повышения точности и эффективности, а также улучшения надежности результатов.