• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Применение карты кохонена в обработке речи и оценка её эффективности

Нилуфар Ниёзматова, Куаныш Джалелов, Барно Абдуллаева (Автор)
В данном исследовании предложен новый подход на основе карты Кохонсна для очистки речевого сигнала от шумов. В этом методе шумовые кластеры определялись с использованием карты Кохонена на основе частотных и энергетических характеристик речи, а для оценки уровня шума применялся метод «Minimum Statistics Noise Estimation». Это позволило добиться стабильных результатов даже при высоких уровнях шума. В качестве признаков использовались MFCC при низком уровне шума и логарифмическая мел-спектрограмма (Log-Mel) при высоком уровне шума. Эксперименты проводились при различных уровнях шума (1%, 5%, 10%, 15%, 20%, 25% белого шума), а результаты оценивались с помощью метрики PESQ (Perceptual Evaluation of Speech Quality).
25-08-2025
  • PDF (Узбекский)
201-204 0 0

Анализ алгоритмов интеллектуальной обработки речевых сигналов

Фахриддин Абдиразаков, Султон Насиров, Уролбой Xусанов (Автор)
В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.
27-08-2025
  • PDF (Узбекский)
304-307 14 6

Современные подходы к определению языка на основе речевых сигналов

Камолиддин Шукуров, Умиджон Хасанов, Мохидил Рахмонова (Автор)
В настоящее время активно развиваются системы, обеспечивающие естественное взаимодействие между человеком и машиной. Одной из актуальных задач является определение языка пользователя. В данной статье рассматривается задача определения языка (Language Identification - LID) на основе речевых сигналов, области её применения, существующие проблемы и современные подходы. Проведен сравнительный анализ классических методов машинного обучения (GMM, SVM, i-vector) и подходов, основанных на глубоких нейронных сетях (CNN, RNN, Transformer). Также описаны основные метрики оценки эффективности систем: Accuracy, Precision, Fl-score и Equal Error Rate (EER). Рассмотрены передовые подходы к решению сложных случаев, таких как переключение языков (code-switching) и открытые наборы языков (open-set LID), а также обсуждены практические перспективы для малоизученных языков, включая узбекский. Результаты исследования могут служить теоретической и практической основой для разработки многоязычных интерактивных голосовых систем.
27-08-2025
  • PDF (Узбекский)
300-304 0 0

Формирование характеристик и параметров речевых сигналов для идентификации личности

Фахриддин Абдиразаков (Автор)
В данной статье рассматривается роль речевых сигналов в системах идентификации личности, а также процессы выделения их характеристик и формирования параметров. Биометрическая уникальность речевого сигнала основана на неповторимых фонетических и акустических особенностях речи каждого человека.
25-08-2025
  • PDF (Узбекский)
194-198 0 0
1 - 4 из 4 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer