В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
Данная статья посвящена необходимости разработки моделей прогнозирования на основе данных для принятия качественных решений в управленческих системах. Рассмотрены методы, основанные на временных рядах, в процессе анализа данных и прогнозирования. Приводятся анализ временных рядов, влияние на формирование управленческой стратегии, а также математические модели и алгоритмы, необходимые для повышения точности и эффективности, а также улучшения надежности результатов.
Настоящая работа посвящена исследованию применения машинного обучения (ML) для трансформации бизнсс-процсссов в условиях цифровой экономики. Рассматриваются возможности использования алгоритмов ML для автоматизации управления, прогнозирования ключевых показателей эффективности (K.PI) и оптимизации распределения ресурсов. В статье подробно описаны теоретические основы, методология разработки программного решения, а также результаты экспериментов на реальных данных из логистики и электронной коммерции. Приводятся примеры применения линейной регрессии, случайного леса, градиентного бустинга и нейронных сетей, демонстрирующие их эффективность в повышении производительности и снижении издержек. Работа подчёркивает стратегическую роль ML как инструмента достижения конкурентных преимуществ и предлагает направления для дальнейших исследований в области адаптации технологий к различным отраслям.