В данной исследовательской работе частично описаны элементы базы знаний, которые широко используются в процессах принятия решений в интеллектуальных системах, этапы их формирования, а также последовательности обогащения логических правил предикатами. Кроме того, исследование включает общую архитектуру интеллектуальных систем на основе базы знаний и теоретические сведения о типах и свойствах правил. В то же время статья также включает анализ основной литературы по построению и обогащению правил с использованием концепций и принципов логики первого порядка.
В данной статье предлагается модель, основанная на глубоком обучении, для извлечения ключевых объектов из текстов и создания базы знаний. Для задачи распознавания именованных сущностей (Named Entity Recognition, NER) используется модель долгой краткосрочной памяти (Long Short-Term Memory, LSTM). Данные предварительно обрабатываются, преобразуются в цифровую форму с помощью токенизации и one-hot кодирования. Модель обучается и оценивается для выделения различных типов объектов (имена людей, даты, географические названия). Экспериментальные результаты демонстрируют эффективность модели, а также анализируется влияние различных параметров.