• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Анализ алгоритмов интеллектуальной обработки речевых сигналов

Фахриддин Абдиразаков, Султон Насиров, Уролбой Xусанов (Автор)
В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.
27-08-2025
  • PDF (Узбекский)
304-307 14 6

Подходы к прогнозированию для интеллектуального анализа данных

Озод Бабомурадов, Озоджон Хайдаров (Автор)
Данная статья посвящена необходимости разработки моделей прогнозирования на основе данных для принятия качественных решений в управленческих системах. Рассмотрены методы, основанные на временных рядах, в процессе анализа данных и прогнозирования. Приводятся анализ временных рядов, влияние на формирование управленческой стратегии, а также математические модели и алгоритмы, необходимые для повышения точности и эффективности, а также улучшения надежности результатов.
27-08-2025
  • PDF (Узбекский)
318-322 0 1

Сравнительный анализ методов машинного обучения в задачах онкопрофилактики и диагностики

Чарос Хидирова (Автор)
В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
28-08-2025
  • PDF
188-194 0 0

Методы аугментации при обработке медицинских изображений

Хабиба Абдиева, Саодат Олимжонова, Гиёсжон Раббимов (Автор)
Искусственный интеллект (ИИ) открывает множество возможностей для интеллектуального анализа медицинских изображений. Однако для эффективной работы таких моделей необходимы большие и качественно размеченные данные. Поскольку в медицинской сфере сбор таких данных является сложным и дорогостоящим, методы аугментации данных приобретают особую важность.
21-08-2025
  • PDF (Узбекский)
20-22 0 0

Расширение правил с использованием логических предсказаний первого порядка при решении задач классификации

Нодир Рахимов, Дилмурод Хасанов, Ойбек Примкулов (Автор)
В данной исследовательской работе частично описаны элементы базы знаний, которые широко используются в процессах принятия решений в интеллектуальных системах, этапы их формирования, а также последовательности обогащения логических правил предикатами. Кроме того, исследование включает общую архитектуру интеллектуальных систем на основе базы знаний и теоретические сведения о типах и свойствах правил. В то же время статья также включает анализ основной литературы по построению и обогащению правил с использованием концепций и принципов логики первого порядка.
29-08-2025
  • PDF (Узбекский)
323-328 0 0
1 - 5 из 5 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer