• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Классификация стадий рака с использованием ансамбля алгоритмов, разработанных на основе принципов частичной прецедентности

Мирзаян Камилов, Нурмухаммад Алимкулов, Махлиёхон Мадаминова (Автор)
В статье исследована эффективность ансамблевых алгоритмов на основе принципов частичной прсцедентности при классификации стадий рака. Механизм взвешенного принятия решений на основе линейной свертки показал высокие результаты при классификации типов рака (С 16, С17, С18, С44, С50, С00). Разработан метод на основе манхэттенского расстояния и пороговых значений, результаты сравнены с классическими алгоритмами. Предложенный ансамблевый алгоритм повышает точность классификации до 94,7-96,2%, что на 3-10% выше результатов существующих алгоритмов.
26-08-2025
  • PDF (Узбекский)
264-268 0 0

Проблемы алгоритмизации при решении задач искусственного интеллекта

Бувсара Джураева (Автор)
В данной статье рассматривается роль алгоритмов в решении задач искусственного интеллекта (ИИ) и способы повышения их эффективности. Будут проанализированы основные алгоритмические подходы, используемые в системах (ИИ), а также освещены их преимущества и ограничения. В статье использована передовая литература, которая поможет изучить теоретические и практические аспекты алгоритмов искусственного интеллекта.
27-08-2025
  • PDF (Узбекский)
289-293 0 0

Алгоритм определения прецидентных объектов в полном пространстве

Ахрам Нишанов, Файзулла Олламберганов, Умиджон Одилжонов (Автор)
Статья посвящено решению проблемы выбора прсцидентных объектов, являющейся важным аспектом мульти кластеризации в процессах распознавания и классификации образов. Предложен новый алгоритм выбора прецидентных объектов с учетом пространства номинальных и числовых признаков. Этот алгоритм обеспечивает точную, устойчивую и прозрачную классификацию данных, повышая эффективность принятия аналитических решений, особенно в процессах медицинской диагностики.
27-08-2025
  • PDF (Узбекский)
280-283 0 0

Использование искусственного интеллекта в сохранении научного наследия: систематизация и цифровой анализ архивов физико-технического института

Дилрабо Фазилова (Автор)
В данной статье анализируются возможности технологий искусственного интеллекта в оцифровке, систематизации и анализе научно-исторического наследия. На примере архивных материалов физико-технического института рассмотрены методология и программные средства цифровой платформы, созданные на основе практического опыта. Анализируются такие направления, как оцифровка архивных документов с использованием технологий OCR, семантический анализ, автоматическая классификация и построение графиков научных знаний.
22-08-2025
  • PDF (Узбекский)
126-129 0 0

Методы аугментации при обработке медицинских изображений

Хабиба Абдиева, Саодат Олимжонова, Гиёсжон Раббимов (Автор)
Искусственный интеллект (ИИ) открывает множество возможностей для интеллектуального анализа медицинских изображений. Однако для эффективной работы таких моделей необходимы большие и качественно размеченные данные. Поскольку в медицинской сфере сбор таких данных является сложным и дорогостоящим, методы аугментации данных приобретают особую важность.
21-08-2025
  • PDF (Узбекский)
20-22 0 0

Расширение правил с использованием логических предсказаний первого порядка при решении задач классификации

Нодир Рахимов, Дилмурод Хасанов, Ойбек Примкулов (Автор)
В данной исследовательской работе частично описаны элементы базы знаний, которые широко используются в процессах принятия решений в интеллектуальных системах, этапы их формирования, а также последовательности обогащения логических правил предикатами. Кроме того, исследование включает общую архитектуру интеллектуальных систем на основе базы знаний и теоретические сведения о типах и свойствах правил. В то же время статья также включает анализ основной литературы по построению и обогащению правил с использованием концепций и принципов логики первого порядка.
29-08-2025
  • PDF (Узбекский)
323-328 0 0
1 - 6 из 6 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer