• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Алгоритмы обработки рентгенографических изображений человеческой стопы

Озод Юсупов, Хабиба Абдиева, Ойбарчин Давронова (Автор)
В данной тезисной работе представлено общее описание алгоритмов обработки рентгеновских изображений человеческой стопы, которые важны для диагностики различных состояний стопы, включая переломы, деформации и заболевания суставов. Исследование охватывает несколько методов обработки изображений, таких как выявление изменений, сегментация и извлечение признаков, что способствует улучшению качества рентгеновских снимков и повышению точности диагностики. Кроме того, в тезисе обсуждаются трудности, связанные с шумами, искажениями и низкой контрастностью рентгеновских изображений, а также предлагаются методы снижения этих проблем. Реализация этих алгоритмов направлена на повышение эффективности диагностики заболеваний стопы и более эффективное принятие медицинских решений.
27-08-2025
  • PDF (Узбекский)
298-300 0 0

Существующие базы изображений и их применение в различных сферах

Дилноз Мухамедиева, Нарзулло Маматов, Илхомжон Валижонов (Автор)
В данном исследовании проанализированы основные базы изображений, используемые в таких областях, как медицина, география, сельское хозяйство и биометрические технологии. В частности, рассмотрены базы данных LIDC-IDRI, OASIS, Landsat, Sentinel-2, Google Earth Engine, PlantVillagc, UAV-bascd crop monitoring datasets, LFW и CASIA-WebFace. В работе обсуждаются исследования и разработки, осуществленные с использованием указанных баз.
28-08-2025
  • PDF (Узбекский)
147-150 0 0

Методы извлечения объектов из изображений

Ахмад Хашимов (Автор)
В статье «Методы извлечения объектов из изображений» рассмотрены основные типы алгоритмов сегментации объектов изображения и представлена информация об их основных преимуществах и недостатках. В зависимости от характера проблемы есть возможность выбрать один или несколько методов.
27-08-2025
  • PDF (Узбекский)
286-289 0 0

Усовершенствованная модель нейронной сети для определения области легких

Нарзулло Маматов, Малика Джалелова, Вохид Файзиев (Автор)
Данная исследовательская работа посвящена вопросу сегментации рентгеновских снимков легких, в которой выдвигается идея усовершенствования традиционной архитектуры U-Net с помощью остаточных связей и адаптивных механизмов обучения, а также данная модель проверяется в экспериментах. В результате было отмечено, что модель достигла высоких показателей точности, коэффициента Dice и IoU.
24-08-2025
  • PDF (Узбекский)
164-166 0 0

Методы аугментации при обработке медицинских изображений

Хабиба Абдиева, Саодат Олимжонова, Гиёсжон Раббимов (Автор)
Искусственный интеллект (ИИ) открывает множество возможностей для интеллектуального анализа медицинских изображений. Однако для эффективной работы таких моделей необходимы большие и качественно размеченные данные. Поскольку в медицинской сфере сбор таких данных является сложным и дорогостоящим, методы аугментации данных приобретают особую важность.
21-08-2025
  • PDF (Узбекский)
20-22 0 0

Вопросы обработки изображений органов человека, полученных методом видеоэндоскопии

Юсуф Юлдошев, Лобар Бадалова (Автор)
В данной статье рассмотрены проблемы, возникающие при цифровой обработке изображений внутренних органов человека, полученных методом видеоэндоскопии, а также пути их устранения. Несмотря на широкое применение видеоэндоскопических изображений в медицине, в диагностике и хирургии, их качество может снижаться из-за таких факторов, как недостаточное освещение, шумы, геометрические искажения и изменение цветового баланса. Кроме того, биологическое разнообразие человеческого организма и патологические различия проявления заболеваний негативно влияют на точность моделей искусственного интеллекта. В статье обоснована актуальность использования современных алгоритмических подходов, включая технологии глубокого обучения, для повышения качества изображений и эффективности диагностики.
29-08-2025
  • PDF (Узбекский)
346-350 0 0

Применение алгоритма кластеризации K-средних для идентификации динамических объектов

Зиёдулло Маликов, Гиёсжон Раббимов (Автор)
В данной статье рассматривается применение алгоритма кластеризации k-means для распознавания динамических объектов. Поскольку метод k-means является одним из методов обучения без учителя, он широко используется в задачах определения, отслеживания и классификации движущихся объектов в реальном времени. Содержание метода, его реализация и недостатки указывают на необходимость применения подходов глубокого обучения.
28-08-2025
  • PDF (Узбекский)
239-241 0 0
1 - 7 из 7 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer