Искусственный интеллект (ИИ) открывает множество возможностей для интеллектуального анализа медицинских изображений. Однако для эффективной работы таких моделей необходимы большие и качественно размеченные данные. Поскольку в медицинской сфере сбор таких данных является сложным и дорогостоящим, методы аугментации данных приобретают особую важность.
Цифровизация здравоохранения требует автоматизированного анализа дермоскопических изображений. Такие изображения играют важную роль в раннем выявлении кожных новообразований, особенно меланомы. В данной статье рассматриваются ключевые проблемы обработки изображений нестандартизированный формат, дисбаланс выборки и неопределенность визуальных признаков. На основе этого был разработан диаграмма последовательности для автоматизированной системы анализа.