Настоящая работа посвящена исследованию применения машинного обучения (ML) для трансформации бизнсс-процсссов в условиях цифровой экономики. Рассматриваются возможности использования алгоритмов ML для автоматизации управления, прогнозирования ключевых показателей эффективности (K.PI) и оптимизации распределения ресурсов. В статье подробно описаны теоретические основы, методология разработки программного решения, а также результаты экспериментов на реальных данных из логистики и электронной коммерции. Приводятся примеры применения линейной регрессии, случайного леса, градиентного бустинга и нейронных сетей, демонстрирующие их эффективность в повышении производительности и снижении издержек. Работа подчёркивает стратегическую роль ML как инструмента достижения конкурентных преимуществ и предлагает направления для дальнейших исследований в области адаптации технологий к различным отраслям.
В работе представлена математическая модель, и результаты проведенных численных расчетов, предназначенные для анализа и прогнозирования распространения загрязняющих веществ в приземном слое атмосферы. Модель учитывает динамику уменьшения концентрации загрязнителей за счет их естественного разложения и фотохимической трансформации, влияние изменений розы ветров и топографии местности, изменение коэффициентов диффузии и турбулентного перемешивания в зависимости от стабильности атмосферной стратификации. Высокая точность и устойчивость результатов обеспечивается за счет использования полунеявной конечно-разностной схемы и метода «прямых» для решения поставленных задач.
В статье приведено нейросетевое прогнозирование геомагнитного К - индекса с использованием нейронных сетей. Построение нейронных сетей проведено для многослойного персептрона и сети радиаль- но базисных функций. Нейросетевые модели имеют минимальную ошибку краткосрочного прогнозирования геомагнитного К - индекса по сравнению со статистическими моделями.
В статье рассматриваются подходы, основанные на машинном обучении, к профилактике эндокринных заболеваний в медицине, их преимущества и перспективы применения. Изучена возможность прогнозирования ранних стадий заболеваний с использованием сбора данных, их анализа и алгоритмов машинного обучения.
В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.