В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
В настоящее время активно развиваются системы, обеспечивающие естественное взаимодействие между человеком и машиной. Одной из актуальных задач является определение языка пользователя. В данной статье рассматривается задача определения языка (Language Identification - LID) на основе речевых сигналов, области её применения, существующие проблемы и современные подходы. Проведен сравнительный анализ классических методов машинного обучения (GMM, SVM, i-vector) и подходов, основанных на глубоких нейронных сетях (CNN, RNN, Transformer). Также описаны основные метрики оценки эффективности систем: Accuracy, Precision, Fl-score и Equal Error Rate (EER). Рассмотрены передовые подходы к решению сложных случаев, таких как переключение языков (code-switching) и открытые наборы языков (open-set LID), а также обсуждены практические перспективы для малоизученных языков, включая узбекский. Результаты исследования могут служить теоретической и практической основой для разработки многоязычных интерактивных голосовых систем.