• Вход
    • en
    • ru
    • uz
  • Текущий выпуск
  • Архивы
    • О журнале
    • Отправка материалов
    • Заявление о конфиденциальности
    • Контакты
Youtube Facebook Instagram Telegram

Последние публикации

  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Информация

  • Для читателей
  • Для авторов
  • Для библиотек
  1. Главная
  2. Найти
Расширенные фильтры

Результаты поиска

##search.searchResults.foundPlural##

Сравнительный анализ методов машинного обучения в задачах онкопрофилактики и диагностики

Чарос Хидирова (Автор)
В статье представлен сравнительный анализ алгоритмов машинного обучения, применяемых для ранней диагностики онкологических заболеваний. В работе рассмотрены алгоритмы Random Forest, XGBoost, AdaBoost и другие, протестированные на различных клинических задачах, таких как рак шейки матки, лёгких и кожи. Особое внимание уделено ансамблевым методам, которые продемонстрировали наивысшую точность, особенно алгоритму Random Forest (случайный лес). Подчёркивается универсальность изучаемых методов, их адаптивность к разнородным медицинским данным и потенциал для разработки интеллектуальных систем поддержки принятия клинических решений.
28-08-2025
  • PDF
188-194 0 0

Современные подходы к определению языка на основе речевых сигналов

Камолиддин Шукуров, Умиджон Хасанов, Мохидил Рахмонова (Автор)
В настоящее время активно развиваются системы, обеспечивающие естественное взаимодействие между человеком и машиной. Одной из актуальных задач является определение языка пользователя. В данной статье рассматривается задача определения языка (Language Identification - LID) на основе речевых сигналов, области её применения, существующие проблемы и современные подходы. Проведен сравнительный анализ классических методов машинного обучения (GMM, SVM, i-vector) и подходов, основанных на глубоких нейронных сетях (CNN, RNN, Transformer). Также описаны основные метрики оценки эффективности систем: Accuracy, Precision, Fl-score и Equal Error Rate (EER). Рассмотрены передовые подходы к решению сложных случаев, таких как переключение языков (code-switching) и открытые наборы языков (open-set LID), а также обсуждены практические перспективы для малоизученных языков, включая узбекский. Результаты исследования могут служить теоретической и практической основой для разработки многоязычных интерактивных голосовых систем.
27-08-2025
  • PDF (Узбекский)
300-304 0 0
1 - 2 из 2 результатов
© Copyright 2025 Современные проблемы интеллектуальных систем All Rights Reserved | Developed by in Science | Site create by in Designer