Данное исследование посвящено анализу существующих систем обнаружения эмоций человека по речевым сигналам, в основном изучая системы с открытым и закрытым исходным кодом, сравнивая их принципы работы, технические характеристики, возможности и области применения. В работе также демонстрируются эксплуатационные характеристики и уровни точности систем распознавания речевых сигналов на разных языках.
В данной статье рассматривается роль речевых сигналов в системах идентификации личности, а также процессы выделения их характеристик и формирования параметров. Биометрическая уникальность речевого сигнала основана на неповторимых фонетических и акустических особенностях речи каждого человека.
В данной статье рассматриваются современные алгоритмы, применяемые для интеллектуального анализа речевых сигналов, а также их научно-практическое значение. Развитие технологий искусственного интеллекта и машинного обучения расширяет возможности автоматической обработки речевых сигналов, извлечения признаков и распознавания. В исследовании анализируются процессы моделирования на основе таких передовых методов, как MFCC, CNN и RNN. Также рассматриваются алгоритмы, применяемые для преобразования речи в текст, идентификации говорящего и понимания контекста. Полученные результаты могут быть использованы в интеллектуальных голосовых интерфейсах, системах безопасности и лингвистических приложениях.