Augmentation methods in medical image processing

Authors

  • Samarkand state university named after Sharaf Rashidov
  • Samarkand branch of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi
  • Samarkand State University

Abstract

Artificial intelligence (Al) models arc creating numerous opportunities for the intelligent analysis of medical images. However, the effective performance of these models requires large and high-quality labeled datasets. Since collecting such data in the medical field is challenging and costly, data augmentation methods play a crucial role.

Keywords:

medical image artificial intelligence GAN segmentation classification

Author Biographies

Khabiba Abdieva,
Samarkand state university named after Sharaf Rashidov
associate professor
Saodat Olimjonova,
Samarkand branch of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi
teacher
Giyosjon Rabbimov,
Samarkand State University
teacher

background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

20

o‘qituvchilarga analitik fikrlash, muloqot, refleksiya va innovatsion qarorlar qabul qilish kabi
ko‘nikmalarni shakllantiradi. Ularning ta’lim jarayoniga integratsiyasi o‘qituvchilarning ta’lim
metodologiyasini modernizatsiya qilishga yordam beradi va o‘quvchilarni samarali o‘qitish uchun
zarur bo‘lgan tanqidiy fikrlash qobiliyatlarini rivojlantiradi. Shu bilan birga, bu jarayonni amalga
oshirishda ko‘plab muammolar ham mavjud. Biroq, raqamli vositalar va innovatsion ta’lim
metodlarini samarali qo‘llash orqali bu muammolarni bartaraf etish va o‘qituvchilarni tanqidiy
fikrlashga o‘rgatish mumkin. Kelajakda bu boradagi takliflar orqali ta’lim tizimini yanada samarali
va zamonaviy qilishga erishish mumkin.

Adabiyotlar ro‘yxati

1.

Shuxratov F. Pedagogik texnologiyalar: Nazariya va amaliyot. Toshkent: O‘qituvchi.

2020.

2.

Turg‘unov A. Raqamli ta’lim texnologiyalari va interaktiv metodlar. Toshkent:

Ma’naviyat. 2018.

3.

Ismoilov R. Innovatsion ta’lim metodlari: Raqamli vositalar va ularning ta’lim

jarayonidagi roli. Samarqand: Ilm-fan. 2019.

4.

Siemens G. (2005). Connectivism: A learning theory for the digital age. International

Journal of Instructional Technology and Distance Learning, 2(1), 3-10.

TIBBIYOT TASVIRLARIGA ISHLOV BERISHDA AUGMENTATSIYA

USULLARI

Abdiyeva Xabiba Sobirovna

Sharof Rashidov nomidagi Samarqand davlat universiteti dotsenti,

orif.habiba1994@gmail.com

Olimjonova Saodat

TATU Samarqand filiali o‘qituvchisi

Rabbimov G‘iyosjon

Samarqand davlat universiteti o‘qituvchisi

Annotatsiya:

Tibbiyot tasvirlarini intellektual tahlil qilishda sun’iy intellekt (SI) modellari

ko‘plab imkoniyatlar yaratmoqda. Biroq, ushbu modellarning samarali ishlashi uchun katta va
sifatli belgilangan (yorliqlangan) ma’lumotlar talab qilinadi. Tibbiyot sohasida bunday
ma’lumotlarni to‘plash qiyin va xarajatli bo‘lgani sababli, ma’lumotlar augmentatsiyasi usullari
muhim ahamiyat kasb etadi.

Kalit so‘zlar:

tibbiyot tasviri, sun’iy intellekt, augmentatsiya, GAN, segmentatsiya,

tasniflash.

МЕТОДЫ АУГМЕНТАЦИИ ПРИ ОБРАБОТКЕ МЕДИЦИНСКИХ

ИЗОБРАЖЕНИЙ

Аннотация:

Искусственный интеллект (ИИ) открывает множество возможностей для

интеллектуального анализа медицинских изображений. Однако для эффективной работы
таких моделей необходимы большие и качественно размеченные данные. Поскольку в
медицинской сфере сбор таких данных является сложным и дорогостоящим, методы
аугментации данных приобретают особую важность.

Ключевые слова:

медицинское изображение, искусственный интеллект,

аугментация, GAN, сегментация, классификация.


background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

21

AUGMENTATION METHODS IN MEDICAL IMAGE PROCESSING

Annotation.

Artificial intelligence (AI) models are creating numerous opportunities for the

intelligent analysis of medical images. However, the effective performance of these models
requires large and high-quality labeled datasets. Since collecting such data in the medical field is
challenging and costly, data augmentation methods play a crucial role.

Key words:

medical image, artificial intelligence, GAN, segmentation, classification.


Tibbiyot tasvirlari bilan ishlaydigan sun’iy intellekt tizimlari so‘nggi yillarda katta e’tiborni

jalb qilmoqda [1]. Bunday tizimlarning samaradorligi, ayniqsa chuqur o‘qitish (deep learning)
modellarining aniqligi, ularni o‘qitish uchun mavjud bo‘lgan ma’lumotlar hajmi va sifati bilan
bevosita bog‘liqdir. Tibbiyot sohasida belgilangan tasvirlar soni kam bo‘lishi bu modellarni to‘liq
o‘qitishni qiyinlashtiradi. Shu sababli, mavjud tasvirlarni sun’iy ravishda ko‘paytirish usullari,
ya’ni augmentatsiya

asosiy yechim hisoblanadi [2,3]. Tibbiyot tasvirlarida an’anaviy (klassik)

augmentatsiya usullari — bu sun’iy ravishda yangi tasvirlar yaratish uchun mavjud tasvirlarga
geometrik yoki piksel darajasida oddiy transformatsiyalarni qo‘llashdir. An’anaviy ya’ni klassik
augmentatsiya

usullariga

tasvirni

aylantirish(rotation),

simmetrik

akslantirish(flip),

siljitish(translation), kesish(cropping), shovqin qo‘shish, masshtablash(zooming), kontrastni
o‘zgartirishlar kiradi. 1-rasmda turli augmentatsiya usullari asosida yaratilgan tibbiyot
tasviri(mammogramma) namunalari keltrilgan.

Tasvirni markaz atrofida

𝛼

burchakka aylantirish quyidagicha ifodalanadi:

[

𝑥

𝑦

] = [

𝑐𝑜𝑠𝛼 − 𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] [

𝑥
𝑦]

;

Tasvirni

𝑠

𝑥

, 𝑠

𝑦

koeffitsiyentlarga ko‘paytirish orqali kattalashtirish yoki kichiklashtirish

mumkin:

[

𝑥

𝑦

] = [

𝑠

𝑥

0

0 𝑠

𝑦

] [

𝑥
𝑦]

;

Tasvirni

𝑡

𝑥

, 𝑡

𝑦

birliklarga siljitish:

[

𝑥

𝑦

] = [

𝑥 + 𝑡

𝑥

𝑦 + 𝑡

𝑦

]

;

Gorizontal va vertikal bo‘yicha simmetrik o‘zgartirish:

𝑥

= 𝑎 − 𝑥, 𝑎 −

rasm eni,

𝑦

= 𝑏 − 𝑦, 𝑏 −

rasm bo‘yi.

1-rasm. Augmentatsiya usullari yaratilgan tasvirlardan namunalar.

Ushbu geometrik o‘zgartirishlar modelga turli holatlardagi tasvirlarni ko‘rsatib, ularni

umumlashtirish qobiliyatini oshiradi. Biroq, ba’zida bunday usullar yetarli bo‘lmaydi. Shu sababli
ilg‘or yondashuvlar, masalan, GAN (Generative Adversarial Networks) yordamida yangi tasvirlar
yaratish, tasvirlar stilini o‘zgartirish (style transfer) yoki boshqa domenlardan o‘rgatilgan
modellarni moslashtirish (domain adaptation) kabi usullar keng qo‘llanilmoqda[4,5]. Bu usullar
yordamida MRI, KT, ultratovush, rentgen va gistologik tasvirlarda kasalliklarni aniqlash,
organlarni ajratish (segmentatsiya), o‘zgarishlarni topish va boshqa vazifalar muvaffaqiyatli
bajarilmoqda. Biroq, augmentatsiya usullari qo‘llanilganda, tasvirning klinik ahamiyati va
anatomik mantiqliligi saqlanishi muhimdir [5].


background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

22

Xulosa qilib aytganda, tibbiyot tasvirlarida augmentatsiya usullari sun’iy intellekt

modellarining samaradorligini oshirishda muhim vositadir. Har bir vazifa uchun eng mos usulni
tanlash va ehtiyotkorlik bilan qo‘llash zarur. Bu sohada izlanishlar davom etmoqda va yanada
samarali yondashuvlar ishlab chiqilmoqda.

Аdabiyotlar ro‘yxati

1.

Saini, D. and Malik, R., 2021, September. Image Data Augmentation Techniques for

Deep Learning-A Mirror Review. In 2021 9th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-5). IEEE.

2.

Rahman, M.E.U., Anishetty, H., Kollpaka, A.K., Yelishetty, A. and Ganta, S.R., 2021,

September. A Quantitative Analysis of Basic vs. Deep Learning-based Image Data Augmentation
Techniques. In 2021 International Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES) (pp. 1-9). IEEE.

3.

Bhuse, P., Singh, B. and Raut, P., 2022. Effect of Data Augmentation on the Accuracy of

Convolutional Neural Networks. In Information and Communication Technology for Competitive
Strategies (ICTCS 2020), ICT: Applications and Social Interfaces (pp. 337-348). Springer
Singapore.

4.

Han, Changhee., Hayashi, Hideaki., Rundo, Leonardo., Araki, Ryosuke., Nagano, Yudai.,

Furukawa, Yujiro., Mauri, Giancarlo., Nakayama, Hideki. (2019). Towards Annotating Less
Medical Images: PGGAN-based MR Image Augmentation for Brain Tumor Detection.

5.

Cirillo, M.D., Abramian, D., and Eklund, A., 2021, September. What is the best data

augmentation for 3D brain tumor segmentation?. In 2021 IEEE International Conference on Image
Processing (ICIP) (pp. 36-40). IEEE.

ESP32 WEB SERVERINIG APPARAT DASTURIY TAMINOTINING TAHLILI

VA QUDUQ SUVI SATHINI ANIQLASH USULLARI

Rajabov Farkhat Farmanovich

PhD, dotsent, Toshkent Axborot texnologiyalari universiteti, Toshkent

radjabov@tuit.uz

Tojiboyeva Iroda

Magistratura talabasi, Toshkent Axborot texnologiyalari universiteti, Toshkent

irodatojiboevva@gmail.com


Annotatsiya

: Ushbu maqolada ESP32 mikrokontrolleri asosida quduq suvi sathini

monitoring qilish va nazorat qilish uchun web server arxitekturasi, apparativ hamda dasturiy
ta’minotining tahlili amalga oshirilgan. Shuningdek, ESP32 platformasida real vaqt rejimida
monitoring olib borish imkoniyatlarini kengaytirish uchun IoT (Internet of Things- Buyumlar
interneti) texnologiyalaridan foydalanish imkoniyatlari o‘rganiladi. Maqolada yer osti suvlarini
kuzatish va nazorat qilish metod hamda usullari to‘la tahlil qilib chiqilgan. Ish davomida ishlab
chiqilgan uskunaning texnik parametrlari va dasturiy ta’minotining ishlash tezligi bo‘yicha
eksperimental natijalar keltirilgan. Mazkur tizim suv resurslarini samarali boshqarish, ekologik
monitoring hamda qishloq xo‘jaligi sohasida keng qo‘llanilishi mumkin.

Kalit so‘zlar

: ESP32, web server, quduq suvi sathi, IoT, apparat ta’minoti, dasturiy

ta’minot, sensorlar, real vaqt monitoringi, aqlli tizimlar.

References

Saini, D. and Malik. R., 2021, September. Image Data Augmentation Techniques for Deep Leaming-A Mirror Review. In 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-5). IEEE.

Rahman, M.E.U., Anishetty, H., Kollpaka, A.K., Yelishetty, A. and Ganta, S.R., 2021, September. A Quantitative Analysis of Basic vs. Deep Learning-based Image Data Augmentation Techniques. In 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) (pp. 1-9). IEEE.

Bhuse, P., Singh, B. and Raut, P., 2022. Effect of Data Augmentation on the Accuracy of Convolutional Neural Networks. In Information and Communication Technology for Competitive Strategies (ICTCS 2020), ICT: Applications and Social Interfaces (pp. 337-348). Springer Singapore.

Han, Changhee., Hayashi, Hideaki., Rundo, Leonardo., Araki, Ryosukc., Nagano, Yudai., Furukawa, Yujiro., Mauri, Giancarlo., Nakayama, Hideki. (2019). Towards Annotating Less Medical Images: PGGAN-bascd MR Image Augmentation for Brain Tumor Detection.

Cirillo, M.D., Abramian, D., and Eklund, A., 2021, September. What is the best data augmentation for 3D brain tumor segmentation?. In 2021 IEEE International Conference on Image Processing (ICIP) (pp. 36-40). IEEE.

Downloads

Published

How to Cite

Abdieva, K., Olimjonova, S., & Rabbimov, G. . (2025). Augmentation methods in medical image processing . Contemporary Problems of Intelligent Systems, 1(1), 20-22. https://inconference.uz/index.php/cpis/article/view/25

Issue

Section

Статьи

Pages

20-22

Views

0

Downloads

0
Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.