Mathematical modeling of the process of distribution of harmful substances in the atmosphere, taking into account the diffusion coefficients

Authors

  • Digital Technologies and Artificial Intelligence Development Research Institute

Abstract

In this study, mathematical modeling was carried out to calculate the diffusion process of harmful substances in the atmosphere, taking into account diffusion coefficients such as wind speed, particle size, and temperature.

Keywords:

atmosphere wind speed particle size temperature advection-diffusion

Author Biography

Iroda Nabieva,
Digital Technologies and Artificial Intelligence Development Research Institute
PhD doctoral student

background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

223

3.Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, et al. The NimStim

set of facial expressions: judgments from untrained research participants. Psychiatry Research.

2009; 168 (3):242–9.

MATHEMATICAL MODELING OF THE PROCESS OF DISTRIBUTION OF

HARMFUL SUBSTANCES IN THE ATMOSPHERE, TAKING INTO ACCOUNT THE

DIFFUSION COEFFICIENTS

Nabieva Iroda Sultonovna

PhD doctoral student Digital Technologies and Artificial Intelligence Development

Research Institute

irodamubina777@gmail.com

Annotation.

In this study, mathematical modeling was carried out to calculate the diffusion

process of harmful substances in the atmosphere, taking into account diffusion coefficients such
as wind speed, particle size, and temperature.

Keywords:

atmosphere, wind speed, particle size, temperature, advection-diffusion.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА

РАСПРОСТРАНЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ С УЧЕТОМ

КОЭФФИЦИЕНТОВ ДИФФУЗИИ

Аннотация:

В данном исследовании при расчете процесса диффузии вредных

веществ в атмосфере было проведено математическое моделирование с учетом таких
коэффициентов диффузии, как скорость ветра, размер частиц и температура.

Ключевые слова:

атмосфера, скорость ветра, размер частицы, температура,

адвекция-диффузия.

ATMOSFERADA ZARARLI MODDALARNING TARQALISH JARAYONINING

DIFFUZIYA KOEFFITSIYENTLARINI INOBATGA OLIB MATEMATIK

MODELLASHTIRISH

Annotatsiya:

Ushbu tadqiqotda atmosferadagi zararli moddalarning tarqalishida, diffuziya

jarayonini hisoblashda shamol tezligi, zarrachalar o‘lchami va harorat kabi diffuziya
koeffitsentlarini hisobga olgan holda matematik modellashtirildi.

Kalit so‘zlar:

atmosfera, shamol tezligi, zarracha o‘lchami, harorat, adveksiya-diffuziya.

Introduction. When modeling the process of transfer of harmful substances in the atmosphere

the main aspects are considered [1, 448-2, 103-116]: source of pollution, its description, the
presence of natural and artificial obstacles, terrain relief, taking into account the influence of
chemical reactions and changes, physical and mechanical properties during the transfer of harmful
substances into the atmosphere, meteorological conditions, washing away by precipitation, settling
in the soil, on the water surface, etc., the existing base for comparing the impact of motor vehicles
on the urban environment (for example, - per person in terms of compliance with sanitary and
hygienic limits, permissible concentrations).

Mathematical modeling of the distribution of harmful substances in the atmosphere, taking

into account the diffusion coefficients. The advection-diffusion equation is proposed for


background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

224

monitoring and predicting the process of distribution of harmful substances in the atmosphere. The
numerical method is represented by an explicit finite difference scheme. [3, 303-309, 4, 17-32, 5,
27-40].

(1)

initial and boundary conditions:

(2)



(3)






Here,

is the concentration of harmful substances in the atmosphere,

t

is time,

0

0

0

( ),

( ),

( ),

( ),

( ),

( )

E x

E xL

E y

E yL

E z

E zL

t

t

t

t

t

t

are the concentrations passing through the

boundaries of the considered areas,

, ,

x y z

are coordinates of the system,

, ,

u

w

are the wind

speeds in three directions,

g

w

is the settling velocity of the particles,

is the coefficient of

absorption of harmful substances in the atmosphere,

is the coefficient that organizes the

retention of particles by plant elements,

,

,

x

y

z

D D D

are the diffusion coefficients,

Q

is the source

power,

is the Drak function,

p

d

is the particle diameter.

The results obtained in the software show that in the diffusion process, particle size, wind

speed, and temperature play an important role in atmospheric dispersion. Small particles (1*10

-9

m) remain in the air longer and the concentration spreads rapidly, while large particles (1*10

-7

m)

settle faster under the influence of gravity. Furthermore, particle mobility is observed to increase
at high temperatures and decrease at low temperatures. Wind speed also affects the transport of
pollutants; strong winds accelerate horizontal advection and ensure wider dispersion.

Fig.1

. Changes in the concentration of

harmful particles over time and particle size

u

= 1

m/s

,

v

= 1

m/s

,

w

= 0,2

m/s

,

T

= 30°

C

,

t

= 0.7 h

,

d

p

=1e

-7

m

Fig.2

.

Changes in the concentration of

harmful particles over time and particle size

u

= 1

m/s

,

v

= 1

m/s

,

w

= 0,2

m/s

,

T

= 30°

C

,

t

= 1.3 h

,

d

p

=1e

-9

m

2

2

2

2

2

2

(

)

,

,

,

,

,

,

,

x

p

y

p

z

g

g

p

D T u d

D T v d

D T

u

v

w

w

t

x

x

w

w

d

y

z

Q

y

z

   

0

0

,

t

 

 

 

 

 

 

0

0

0

0

0

0

0

0

0

,

,

,

,

,

.

x

x

y

y

z

z

ExL

x L

Ex

x

x

x L

x

x

EyL

Ey

y L

y

y

y

y

y L

EzL

z L

Ez

z

z

z L

z

z

x

l

x

l

y

l

y

l

z

t

t

t

t

t

t

l

z

l


background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

225


Over time, pollutants are actively dispersed in the atmosphere, and their distribution area

expands significantly. Wind speed influences the spread of pollutants. These observations make it

important to take into account meteorological conditions when monitoring and forecasting the

impact of industrial emissions on the atmosphere. The developed mathematical model and

numerical algorithm are an effective tool for analyzing and predicting the distribution of pollutants

in the atmosphere.

References

1. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения

атмосферы. Л.: Гидрометеоиздат, 1975. 448 с.

2. Ложкин В.Н., Медейко В.В. Модели оценки экологического ущерба, применяемые

в Российской Федерации, США и странах ЕС, при государственном регулировании
воздействия транспортных средств на окружающую среду // Информационный бюллетень.
№ 2 (32). «Вопросы охраны атмосферы от загрязнения». 2005. С. 103–116.

3. Ravshanov N., Nabieva I.S., Nasrullayev P.A. 2024. Zararli moddalarni atmosferada

tarqalish jarayonini fizik xususiyatlarini sonli tadqiq qilish. Современное состояние и
Перспективы развития цифровых Технологий и искусственного Интеллекта Сборник
докладов международной научно-технической конференции Бухара, 27-28 сентября –C.
303-309

4. Равшанов Н.1, Набиева И.С. 2024. Математическое моделирование процесса

распространения вредных веществ в атмосфере с учетом температуры, физических и
химических свойств. Международный журнал теоретических и прикладных вопросов
цифровых технологий. № 7(4):27-32.

5. Nabieva I.S. 2025. Numerical modeling of the transport and diffusion of pollutant particles

taking into account airflow characteristics and temperature. Problems of Computational and
Applied Mathematics. 1(63):27-40.

SUST SHAKLLANGAN JARAYONLAR TUSHUNCHASI VA XUSUSIYATLARI

Kabildjanov Aleksandr Sabitovich

“TIQXMMI” Milliy tadqiqot universiteti dotsenti

Pulatov G‘iyos Gofurjonovich

“TIQXMMI” Milliy tadqiqot universiteti assistenti

Annotatsiya:

Mazkur tadqiqot ishi sust shakllangan jarayonlarni asosiy tushunchalarini va

xususiyatlarini tahlil qilishga bag‘ishlangan bo‘lib, unda tibbiy, ijtimoiy va texnologik tizimlarda
uchraydigan jarayonlar, jumladan noaniqlik, ko‘p omillilik va formal modellashtirish
murakkabligi kabilar bayon etilgan.

Kalit so‘zlar:

sust shakllangan jarayonlar, yurak-qon bosimi kasalliklari, ob-havo omillari,

noaniqlik, sun’iy intellekt, ansambl yondashuv.

References

Берлянд M.E. Современные проблемы атмосферной диффузии и загрязнения атмосферы. Л.: Гидрометеоиздат, 1975. 448 с.

Ложкин В.Н., Медейко В.В. Модели оценки экологического ущерба, применяемые в Российской Федерации, США и странах ЕС, при государственном регулировании воздействия транспортных средств на окружающую среду // Информационный бюллетень. № 2 (32). «Вопросы охраны атмосферы от загрязнения». 2005. С. 103-116.

Ravshanov N., Nabieva I.S., Nasrullaycv Р.А. 2024. Zararli moddalami atmosferada tarqalish jarayonini fizik xususiyatlarini sonli tadqiq qilish. Современное состояние и Перспективы развития цифровых Технологий и искусственного Интеллекта Сборник докладов международной научно-технической конференции Бухара, 27-28 сентября -С. 303-309

Равшанов Н.1, Набиева И.С. 2024. Математическое моделирование процесса распространения вредных веществ в атмосфере с учетом температуры, физических и химических свойств. Международный журнал теоретических и прикладных вопросов цифровых технологий. № 7(4):27-32.

Nabieva I.S. 2025. Numerical modeling of the transport and diffusion of pollutant particles taking into account airflow characteristics and temperature. Problems of Computational and Applied Mathematics. l(63):27-40.

Downloads

Published

How to Cite

Nabieva, I. (2025). Mathematical modeling of the process of distribution of harmful substances in the atmosphere, taking into account the diffusion coefficients . Contemporary Problems of Intelligent Systems, 1(1), 223-225. https://inconference.uz/index.php/cpis/article/view/65

Issue

Section

Статьи

Pages

223-225

Views

0

Downloads

0
Download data is not yet available.