Algorithms for processing x-ray images of the human foot

Authors

  • Samarkand State University named after Sharof Rashidov
  • Samarkand State University named after Sharof Rashidov
  • Samarkand State University named after Sharof Rashidov

Abstract

This abstract focuses on the development and application of algorithms for processing X-ray images of the human foot, which are crucial for diagnosing various foot conditions, including fractures, deformities, and joint diseases. The study examines various image processing techniques, including edge detection, segmentation, and feature extraction, to enhance the quality of X-ray images and improve diagnostic accuracy. Furthermore, the paper discusses the challenges of handling noise, distortion, and low contrast in X-ray images and presents methods for mitigating these issues while preserving critical details. Through the implementation of these algorithms, the study aims to enhance the efficiency of foot-related diagnoses and contribute to more effective clinical decision-making.

Keywords:

human foot x-ray images noise enhancement segmentation

Author Biographies

Ozod Yusupov,
Samarkand State University named after Sharof Rashidov
associate professor
Khabiba Abdieva,
Samarkand State University named after Sharof Rashidov
associate professor
Oybarchin Davronova,
Samarkand State University named after Sharof Rashidov
graduate student

background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

298

 

 

0,

,

1,

.

f i

y

f i

 

4-qadam.

f

vektor o‘lchamini kamaytirish amalga oshiriladi, ya’ni

0

y

bo‘lsa, u holda

unga mos element

f

vektordan chiqarib yuboriladi;

5-qadam. Tamom.

Xulosa.

Maqolada nutq signalini samarali segmentlash uchun ko‘p bosqichli tizimli

yondashuv taklif etilgan bo‘lib, bunda VAD algoritmi asosiy vosita sifatida qo‘llaniladi. Nutq
signalining turli segmentlarini aniqlash, ularga tegishli parametrlarni belgilash va bu parametrlar
asosida segmentlarni tahlil qilish usullari yoritilgan. Algoritm samaradorligi maxsus aniqlik
ko‘rsatkichlari bilan baholangan va mavjud yondashuvlar bilan taqqoslangan. Ushbu yondashuv
nutqni avtomatik qayta ishlovchi tizimlar, xususan, shaxsni ovoz orqali aniqlash, nutqni tanish va
boshqa sohalarda qo‘llanish uchun muhim ahamiyatga ega.

Adabiyotlar ro‘yxati

1.

Х.Т. Дусанов The issue of recognizing a person based on his voice. Computer Science

and Engineering Technology. Collection of materials of the international scientific and technical
conference - Jizzakh: Jizzakh branch of UzMU, October 13, 2023. 140-143 bet.

2.

Зилинберг А.Ю. Разработка и исследование временных и спектральных алгоритмов

VAD (Voice Activity Detection) //А.Ю.Зилинберг, Ю.А.Корнеев // Российская школа-
конференция «Мобильные системы передачи данных» / Зеленоград: МИЭТ, 2006. – С. 58–
70.

3.

Stejskal V. Empty speech pause detection algorithms’ comparison // V.Stejskal,

N.Bourbakis, A.Esposito // International Journal of Advanced Intelligence. – 2010. – Vol. 2. – No.
1. – P. 145–160.

4.

Н.С.Маматов, О.Ж.Бабомурадов, Х.Т. Дусанов Creation of a database for identifying

persons by voice. International Journal of Theoretical and Applied Issues of Digital Technologies
Vol. 5 No. 3 (2023), 25-32 b.

INSON OYOG‘I RENTGENOGRAFIK TASVIRLARIGA ISHLOV BERISH

ALGORITMLARI

Yusupov Ozod Rabbimovich

Sharof Rashidov nomidagi Samarqand davlat universiteti dotsenti

Abdiyeva Xabiba Sobirovna

Sharof Rashidov nomidagi Samarqand davlat universiteti dotsenti

orif.habiba1994@gmail.com

Davronova Oybarchin Murodovna

Sharof Rashidov nomidagi Samarqand davlat universiteti magistranti

Annotatsiya:

Ushbu tezisda inson oyog‘ining rentgen tasvirlariga ishlov berish

algoritmlarining umumiy tavsifi keltirilgan bo‘lib, ular oyoqdagi turli holatlarni, jumladan,
sinishlar, deformatsiyalar va bo‘g‘im kasalliklarini tashxislash uchun muhimdir. Tadqiqot
tasvirlarda o‘zgarishlarni aniqlash, segmentatsiya va belgilarni ajratib olish kabi bir nechta tasvirga
ishlov berish usullarini o‘rganadi, bu esa rentgen tasvirlarining sifatini yaxshilash va tashxis
aniqligini oshirishga yordam beradi. Bundan tashqari, tezisda rentgen tasvirlarida shovqin,


background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

299

buzilish va past kontrastni boshqarishdagi qiyinchiliklar muhokama qilinadi va ushbu
muammolarni kamaytirish bo‘yicha usullar bayon etilgan. Ushbu algoritmlarni amalga oshirish
orqali tadqiqot oyoq bilan bog‘liq tashxislarning samaradorligini oshirish va tibbiy qarorlar qabul
qilishni yanada samarali qilishni maqsad qiladi.

Kalit so‘zlar:

inson oyog‘i, rentgen tasvirlari, shovqin, yaxshilash, segmentatsiya.

АЛГОРИТМЫ ОБРАБОТКИ РЕНТГЕНОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ

ЧЕЛОВЕЧЕСКОЙ СТОПЫ

Аннотация:

В данной тезисной работе представлено общее описание алгоритмов

обработки рентгеновских изображений человеческой стопы, которые важны для
диагностики различных состояний стопы, включая переломы, деформации и заболевания
суставов. Исследование охватывает несколько методов обработки изображений, таких как
выявление изменений, сегментация и извлечение признаков, что способствует улучшению
качества рентгеновских снимков и повышению точности диагностики. Кроме того, в тезисе
обсуждаются трудности, связанные с шумами, искажениями и низкой контрастностью
рентгеновских изображений, а также предлагаются методы снижения этих проблем.
Реализация этих алгоритмов направлена на повышение эффективности диагностики
заболеваний стопы и более эффективное принятие медицинских решений.

Ключевые слова:

стопа человека, рентгеновские изображения, шум, улучшение,

сегментация.

ALGORITHMS FOR PROCESSING X-RAY IMAGES OF THE HUMAN FOOT

Annotation:

This abstract focuses on the development and application of algorithms for

processing X-ray images of the human foot, which are crucial for diagnosing various foot
conditions, including fractures, deformities, and joint diseases. The study examines various image
processing techniques, including edge detection, segmentation, and feature extraction, to enhance
the quality of X-ray images and improve diagnostic accuracy. Furthermore, the paper discusses
the challenges of handling noise, distortion, and low contrast in X-ray images and presents
methods for mitigating these issues while preserving critical details. Through the implementation
of these algorithms, the study aims to enhance the efficiency of foot-related diagnoses and
contribute to more effective clinical decision-making.

Key words:

human foot, x-ray images, noise, enhancement, segmentation.


Inson oyog‘ining rentgen tasvirlariga ishlov berish algoritmlari tibbiy diagnostika jarayonida

muhim o‘rin tutadi. Ushbu algoritmlar yordamida oyoqdagi turli holatlar, jumladan, suyak
sinishlari, deformatsiyalar va bo‘g‘im kasalliklarini aniqlash ancha osonlashadi[1]. Tasvirlarga
ishlov berish bosqichlari odatda tasvirlarga dastlabki ishlov berish, segmentatsiya, belgilarni
ajratib olish va sinflashtirishdan iborat bo‘ladi. Ayniqsa, segmentatsiya yordamida suyaklar va
yumshoq to‘qimalar aniq ajratiladi, bu esa shifokorlar uchun muhim diagnostik ma’lumotlarni
beradi. Algoritmlar shuningdek, tasvirlardagi shovqin va artefaktlarni kamaytirishga, kontrastni
oshirishga yordam beradi, bu esa yakuniy tashxisning aniqligini oshiradi[2]. Raqamli tibbiyotning
rivojlanishi bilan bunday algoritmlar yanada takomillashib, sun’iy intellekt yordami bilan
avtomatlashtirilgan tashxis qo‘yishga xizmat qilmoqda. Natijada, rentgen tasvirlariga ishlov berish
algoritmlari oyoq kasalliklarini erta aniqlash va davolashni samarali tashkil etishga zamin yaratadi.
Rentgen tasviri hosil bo‘lishi quyidagicha ifodalanadi:

𝔑(𝜃, 𝑠) = ∫ ∫ 𝑓(𝑥, 𝑦)𝜕(𝑠 − 𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃)𝑑𝑥𝑑𝑦;

−∞

−∞


background image

Современные проблемы интеллектуальных систем. Республиканская научно-практическая конференция. Джизак, 18-19 апреля 2025 г.

300

Bu yerda,

𝑓(𝑥, 𝑦) −

oyoqning 2D zichlik funksiyasi(masalan, suyak zichligi),

𝜃 −

proyeksiya

burchagi,

𝑠 −

detektordagi koordinatasi.

Inson oyog‘i rentgen tasvirlariga dastlabki ishlov berish – bu tasvirni keyingi tahlilga

tayyorlash bosqichidir[3]. Bu bosqichda tasvir sifati yaxshilanadi, shovqin kamaytiriladi, kontrast
oshiriladi va keraksiz elementlar olib tashlanadi. Dastlabki ishlov berish aniqlikni oshirish va
keyingi bosqichlardagi ya’ni segmentatsiya, klassifikatsiya xatoliklarini kamaytirishga xizmat
qiladi. Rentgen tasvirlarda turli xil shovqinlar (masalan, Gauss shovqini) bo‘ladi. Buni filtrlar
yordamida kamaytirish mumkin. Oyoq rentgen tasvirlari ko‘pincha past kontrastga ega bo‘ladi.
Kontrastni oshirish orqali suyak va yumshoq to‘qimalar aniqroq ko‘rinadi[4]. Suyaklarning
konturlarini aniqlashda chegaralarni aniqlash usullari ishlatiladi. Tasvirni qora-oq formatga
o‘tkazib, muhim sohalarni ajratishda esa binarizatsiya usuli ishlatiladi.

Adabiyotlar рўйхати

[1] S. Myint, A. S. Khaing and H. M. Tun, “Detecting Leg Bone Fracture in X-ray Images”,

International Journal of Scientific & Research, vol. 5, Jun. 2016, pp. 140-144.

[2] V. D. Vegi, S. L. Patibandla, S. S. Kavikondala and Z. Basha, “Computerized Fracture

Detection System using X-ray Images”, International Journal of Control Theory and Applications,
vol. 9, Nov. 2016, pp. 615-621.

[3] S. K. Mahendran and S. Santhosh, “An Enhanced Tibia Fracture Detection Tool Using

Image Processing and Classification Fusion Techniques in X-Ray Images”, Global Journal Of
Computer Science and Technology, vol. 11, Aug. 2011, pp. 27-28.

[4] S. K. Mahendran and S. Santhosh Baboo, “Ensemble Systems for Automatic Fracture

Detection”, International Journal of Engineering and Technology (JACSIT), vol. 4, Feb. 2012,
pp.7-10.

NUTQ SIGNALLARI ASOSIDA TILNI ANIQLASHNING ZAMONAVIY

YONDASHUVLARI

Shukurov Kamoliddin Elbobo o‘g‘li

Muhammad al-Xorazmiy nomidagi TATU, “Sun’iy intellekt” kafedrasi dotsenti, PhD

Xasanov Umidjon Komiljon o‘g‘li

Muhammad al-Xorazmiy nomidagi TATU, “Sun’iy intellekt” kafedrasi assistenti

Rahmonova Mohidil Egamberdiyevna

Ichki ishlar vazirligi akademiyasi “Kriminalistik ekspertizalar” kafedrasi

umidjon0923@gmail.com


Annotatsiya:

Hozirgi kunda inson va mashina o‘rtasidagi tabiiy muloqotni ta’minlovchi

tizimlar keng rivojlanmoqda. Ular orasida foydalanuvchining tilini aniqlash masalasi alohida
dolzarb ahamiyat kasb etmoqda. Ushbu maqolada nutq signallari asosida tilni aniqlash (Language
Identification – LID) masalasi, uning qo‘llanilish sohalari, muammolari va zamonaviy
yondashuvlari tahlil qilinadi. Tilni aniqlash tizimlarida klassik mashinali o‘rganish (GMM, SVM,
i-vector) hamda chuqur neyron tarmoqlarga (CNN, RNN, Transformer) asoslangan yondashuvlar
solishtiriladi. Code-switching va Open-set LID kabi murakkab holatlar uchun ishlatilayotgan
ilg‘or yondashuvlar ko‘rib chiqilib, o‘zbek tili kabi kam o‘rganilgan tillar uchun amaliy istiqbollar
muhokama qilinadi. Maqola natijalari ko‘p tilli interaktiv ovozli tizimlarni yaratishda muhim
nazariy va amaliy asos bo‘lib xizmat qiladi.

References

S. Myint, A. S. Khaing and H. M. Tun, “Detecting Leg Bone Fracture in X-ray Images”, International Journal of Scientific & Research, vol. 5, Jun. 2016, pp. 140-144.

V. D. Vegi, S. L. Patibandla, S. S. Kavikondala and Z. Basha, “Computerized Fracture Detection System using X-ray Images”, International Journal of Control Theory and Applications, vol. 9, Nov. 2016, pp. 615-621.

S. K. Mahendran and S. Santhosh, “An Enhanced Tibia Fracture Detection Tool Using Image Processing and Classification Fusion Techniques in X-Ray Images”, Global Journal Of Computer Science and Technology, vol. 11, Aug. 2011, pp. 27-28.

S. K. Mahendran and S. Santhosh Baboo, “Ensemble Systems for Automatic Fracture Detection”, International Journal of Engineering and Technology (JACSIT), vol. 4, Feb. 2012, pp.7-10.

Downloads

Published

How to Cite

Yusupov, O., Abdieva, K., & Davronova, O. (2025). Algorithms for processing x-ray images of the human foot . Contemporary Problems of Intelligent Systems, 1(1), 298-300. https://inconference.uz/index.php/cpis/article/view/72

Issue

Section

Статьи

Pages

298-300

Views

0

Downloads

0
Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.